深圳市万天源光电有限公司 Shenzhen Wanty Photoelectric Co., Ltd

SPECIFICATION

Custom	er:						
Model N	lame: <u>W</u>	VTY070QV	V71A01				
NO.:	_						
Date:	_						
Version:							
☐ Preliminary Specification ■ Final Specification Customer's Acceptance							
Approved by		Comment					
Approved by Revie			5				
Approved by	Revie	wed by	Prepared by				
Approved by	Revie	wed by	Prepared by				

.

Record of Revision

Version	Revise Date	Page	Content
Pre-Spec.01	2009/01/12	All	Initial Release
02	2009/06/22	1	Add B/L & Panel power consumption.
		6	Add Vcom value.
		7	Add current consumption. Update backlight driving condition.
Final-Spec.01	2009/12/02	All	The first version final specification.
		6	Modify V _{COM} to 3.8V(Typ.), 3.6V(Min.) and 4.0V(Max.).
		9	Add Input Clock and Data Timing Diagram.
		18	Update the Mechanical Drawing.
Final-Spec.02	2010/11/03	6	Modify V _{COM} values and add note 4

Contents

1.	General Specifications	4
2.	Pin Assignment	5
	Operation Specifications	
	Optical Specifications	
	Reliability Test Items	
	General Precautions	
	Mechanical Drawing	
	Package Drawing	

1. General Specifications

No.	Item	Specification	Remark
1	LCD size	7.0 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	800 imes 3 (RGB) imes 480	
4	Display mode	Normally White, Transmissive	
5	Dot pitch	0.0642(W) × 0.1790(H) mm	
6	Active area	154.08(W) × 85.92(H) mm	
7	Module size	164.9(W) ×100.0(H) ×5.7(D) mm	Note 1
8	Surface treatment	Anti-Glare	
9	Color arrangement	RGB-stripe	
10	Interface	Digital	
11	Backlight power consumption	1.674W (Typ.)	
12	Panel power consumption	0.226W (Typ.)	
13	Weight	150g (Typ.)	

Note 1: Refer to Mechanical Drawing.

2. Pin Assignment

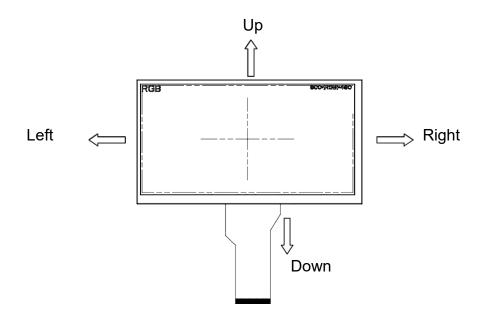
FPC Connector is used for the module electronics interface. The recommended model is FH12A-50S-0.5SH manufactured by Hirose.

Pin No.	Symbol	I/O	Function	Remark
1	V _{LED+}	Р	Power for LED backlight (Anode)	
2	V _{LED+}	Р	Power for LED backlight (Anode)	
3	V _{LED-}	Р	Power for LED backlight (Cathode)	
4	V _{LED-}	Р	Power for LED backlight (Cathode)	
5	GND	Р	Power ground	
6	V _{COM}	I	Common voltage	
7	DV_{DD}	Р	Power for Digital Circuit	
8	MODE	I	DE/SYNC mode select	Note 1
9	DE	1	Data Input Enable	
10	VS	I	Vertical Sync Input	
11	HS	I	Horizontal Sync Input	
12	В7	I	Blue data(MSB)	
13	B6	I	Blue data	
14	B5	I	Blue data	
15	B4	I	Blue data	
16	В3	I	Blue data	
17	B2	I	Blue data	
18	B1	I	Blue data	Note 2
19	В0	I	Blue data(LSB)	Note 2
20	G7	I	Green data(MSB)	
21	G6	I	Green data	
22	G5	I	Green data	
23	G4	I	Green data	
24	G3	I	Green data	
25	G2	I	Green data	
26	G1	I	Green data	Note 2

27	G0	I	Green data(LSB)	Note 2
28	R7	I	Red data(MSB)	
29	R6	I	Red data	
30	R5	I	Red data	
31	R4	I	Red data	
32	R3	I	Red data	
33	R2	I	Red data	
34	R1	I	Red data	Note 2
35	R0	I	Red data(LSB)	Note 2
36	GND	Р	Power Ground	
37	DCLK	I	Sample clock	Note 3
38	GND	Р	Power Ground	
39	L/R	I	Left / right selection	Note 4,5
40	U/D	I	Up/down selection	Note 4,5
41	V_{GH}	Р	Gate ON Voltage	
42	V_{GL}	Р	Gate OFF Voltage	
43	AV _{DD}	Р	Power for Analog Circuit	
44	RESET	I	Global reset pin.	Note 6
45	NC	-	No connection	
46	V _{COM}	I	Common Voltage	
47	DITHB	I	Dithering function	Note 7
48	GND	Р	Power Ground	
49	NC	-	No connection	
50	NC	-	No connection	

I: input, O: output, P: Power

Note 1: DE/SYNC mode select. Normally pull high.
When select DE mode, MODE="1", VS and HS must pull high.
When select SYNC mode, MODE= "0", DE must be grounded.


Note 2: When input 18 bits RGB data, the two low bits of R,G and B data must be grounded.

Note 3: Data shall be latched at the falling edge of DCLK.

Note 4: Selection of scanning mode

Setting of scan control input		Scanning direction		
U/D	L/R	Scalling direction		
GND	DV _{DD}	Up to down, left to right		
DV _{DD}	GND	Down to up, right to left		
GND	GND	Up to down, right to left		
DV _{DD}	DV _{DD}	Down to up, left to right		

Note 5: Definition of scanning direction. Refer to the figure as below:

Note 6: Global reset pin. Active low to enter reset state. Suggest to connect with an RC reset circuit for stability. Normally pull high.

Note 7: Dithering function enable control, normally pull high. When DITHB="1", Disable internal dithering function, When DITHB="0", Enable internal dithering function,

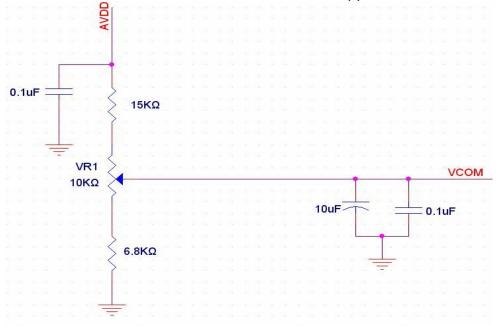
3. Operation Specifications

3.1. Absolute Maximum Ratings

(Note 1)

Item	Symbol	Val	ues	Unit	Remark
item	Cymbol	Min.	Max.	OTIL	rtomark
	DV _{DD}	-0.3	5.0	V	
	AV_DD	6.5	13.5	V	
Power voltage	V_{GH}	-0.3	40.0	V	
	V_{GL}	-20.0	0.3	V	
	V _{GH} -V _{GL}	-	40.0	V	
Operation Temperature	T _{OP}	-20	70	°C	
Storage Temperature	T _{ST}	-30	80	°C	
LED Reverse Voltage	V_R	-	1.2	V	Each LED Note 2
LED Forward Current	l _F	-	25	mA	Each LED

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.


Note 2: V_R Conditions: Zener Diode 20mA

3.1.1. Typical Operation Conditions

(Note 1)

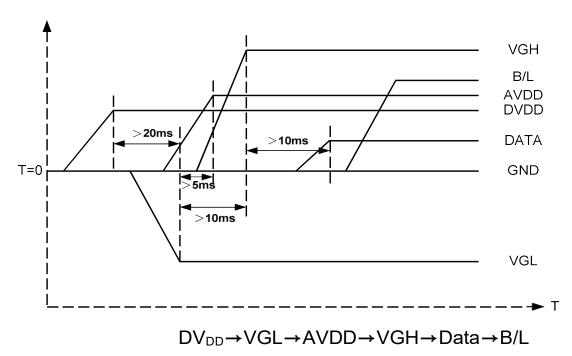
(11010-1)						
Item	Symbol		Values	Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Offic	Remark
	DV _{DD}	3.0	3.3	3.6	\	Note 2
Power veltage	AV_{DD}	10.2	10.4	10.6	٧	
Power voltage	V_{GH}	15.3	16.0	16.7	V	
	V_{GL}	-7.7	-7.0	-6.3	V	
Input signal voltage	V _{COM}	2.6	(3.6)	4.6	V	Note 4
Input logic high voltage	V _{IH}	0.7 DV _{DD}	-	DV _{DD}	V	Note 3
Input logic low voltage	V _{IL}	0	-	0.3 DV _{DD}	V	Note 3

- Note 1: Be sure to apply DV_{DD} and V_{GL} to the LCD first, and then apply V_{GH} .
- Note 2: DV_{DD} setting should match the signals output voltage (refer to Note 3) of customer's system board.
- Note 3: DCLK, HS, VS, RESET, U/D, L/R, DE, R0~R7, G0~G7, B0~B7, MODE, DITHB.
- Note 4: Typical V_{COM} is only a reference value. It must be optimized according to each LCM. Please use VR and base on below application circuit.

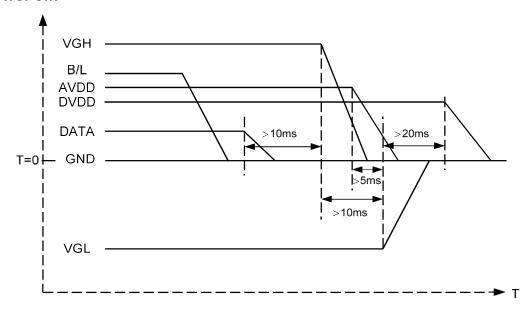
3.1.2. Current Consumption

	Symbol		Values		- Unit	Remark
Item	Symbol	Min.	Тур.	Max.		Nemark
Current for Driver	I _{GH}	•	0.2	1.0	mA	V _{GH} =16.0V
	I _{GL}	-	0.2	1.0	mA	V _{GL} = -7.0V
	IDV _{DD}	-	4.0	10	mA	DV _{DD} =3.3V
	IAV _{DD}	-	20	50	mA	AV _{DD} =10.4V

3.1.3. Backlight Driving Conditions


Item	Symbol		Values	Unit	Domark	
item	Symbol	Min.	Тур.	Max.	Offic	Remark
Voltage for LED backlight	VL	8.7	9.3	9.9	>	Note 1
Current for LED backlight	ΙL	170	180	200	mA	
LED life time	-	20,000	-	-	Hr	Note 2

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25°C and I_L =180mA.


Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and I_L =180mA. The LED lifetime could be decreased if operating I_L is lager than 180mA.

3.2. Power Sequence

a. Power on:

b. Power off:

 $B/L \rightarrow Data \rightarrow VGH \rightarrow AVDD \rightarrow VGL \rightarrow DV_{DD}$

Note: Data include R0~R7, B0~B7, GO~G7, U/D, L/R, DCLK, HS,VS,DE.

3.2.1. Timing

Item	Symbol		Values	Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Offic	Remark
Horizontal Display Area	thd	-	800	-	DCLK	
DCLK Frequency	fclk	26.4	33.3	46.8	MHz	
One Horizontal Line	th	862	1056	1200	DCLK	
HS pulse width	thpw	1	-	40	DCLK	
HS Blanking	thb	46	46	46	DCLK	
HS Front Porch	thfp	16	210	354	DCLK	

lte m	Symbol	Value s			Unit	Remark
		Min.	Тур.	Max.		
Vertical Display Area	tvd	-	480	-	TH	
VS period time	tv	510	525	650	TH	
VS pulse width	tvpw	1	ı	20	TH	
VS Blanking	tvb	23	23	23	TH	
VS Front Porch	tvfp	7	22	147	TH	

3.2.2. Data Input Format

Figure 3. 1 Horizontal input timing diagram.

Figure 3. 2 Vertical input timing diagram.

4. Optical Specifications

Item	Symbol	Condition	Values			Unit	Remark
iteiii	Syllibol	Condition	Min.	Тур.	Max.	Offic	Remark
Viewing angle (CR≥ 10)	θι	Φ=180°(9 o'clock)	60	70	-		Note 1
	θ_{R}	Ф=0°(3 o'clock)	60	70	-	dograo	
	θτ	Φ=90°(12 o'clock)	40	50	-	degree	
	θ_{B}	Φ=270°(6 o'clock)	60	70	-		
Response time	T _{ON}		-	10	20	msec	Note 3
	T_{OFF}		ı	15	30	msec	Note 3
Contrast ratio	CR		400	500	-	-	Note 4
Color chromaticity	W _X	Normal θ=Φ=0°	0.26	0.31	0.36	-	Note 2
	W_{Y}		0.28	0.33	0.38	-	Note 5 Note 6
Luminance	L		400	450	-	cd/m²	Note 6
Luminance uniformity	Yu		70	75	-	%	Note 7

Test Conditions:

- 1. DV_{DD} =3.3V, I_L =180mA (Backlight current), the ambient temperature is 25°C.
- 2. The test systems refer to Note 2.

Note 1: Definition of viewing angle range

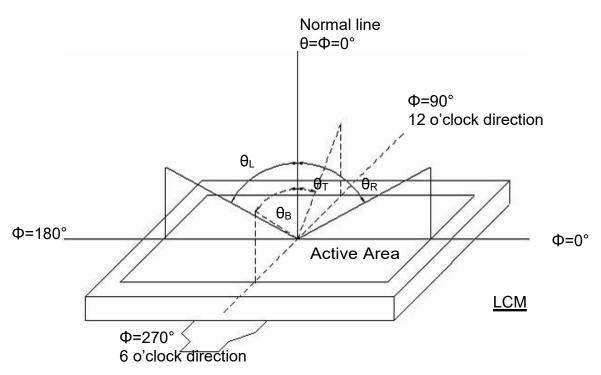


Fig. 4-1 Definition of viewing angle

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° /Height: 500mm.)

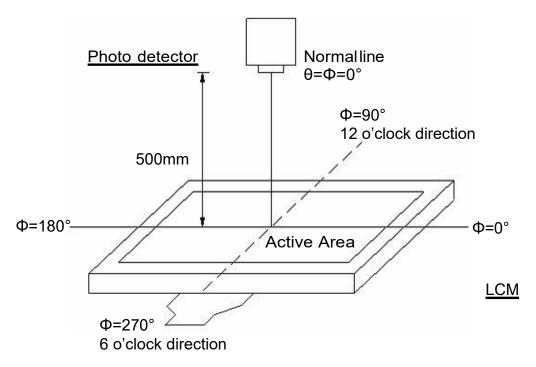


Fig. 4-2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

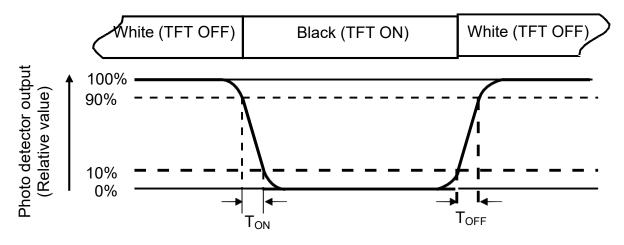


Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD on the "White" state

Luminance measured when LCD on the "Black" state

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is I_L =180mA .

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

asuring point is placed at the center of each summance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

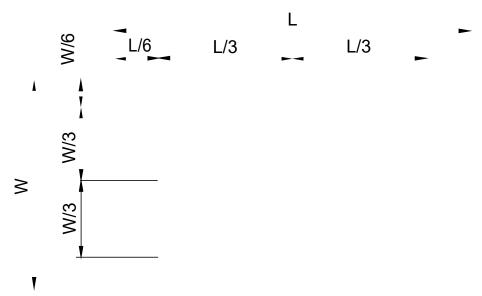


Fig. 4-4 Definition of measuring points

 B_{max} : The measured maximum luminance of all measurement position. B_{min} : The measured minimum luminance of all measurement position.

5. Reliability Test Items

Item	Tes	Remark		
High Temperature Storage	Ta = 80°C	240hrs	Note 1, I	Note 4
Low Temperature Storage	Ta=-30°C	240hrs	Note 1, I	Note 4
High Temperature Operation	Ts = 70°C	240hrs	Note 2,	Note 4
Low Temperature Operation	Ta=-20°C	240hrs	Note 1, I	Note 4
Operate at High Temperature and Humidity	+60°C, 90%RH	240hrs	Note 4	
Thermal Shock		0°C/30 min for a total 100 cold temperature and end ure.	Note 4	
Vibration Test	Frequency range:1 Stroke:1.5mm Sweep:10Hz~55H: 2 hours for each di (6 hours for total)	z~10Hz		
Mechanical Shock	100G 6ms,±X, ±Y, direction	±Z 3 times for each		
Package Vibration Test	Random Vibration 0.015G*G/Hz from from 200-500HZ 2 hours for each di (6 hours for total)	5-200HZ, -6dB/Octave		
Package Drop Test	Height:60 cm 1 corner, 3 edges,	6 surfaces		
Electro Static Discharge	± 2KV, Human B	ody Mode, 100pF/1500Ω		

Note 1: Ta is the ambient temperature of samples.

Note 2: Ts is the temperature of panel's surface.

Note3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

6. General Precautions

6.1. Safety

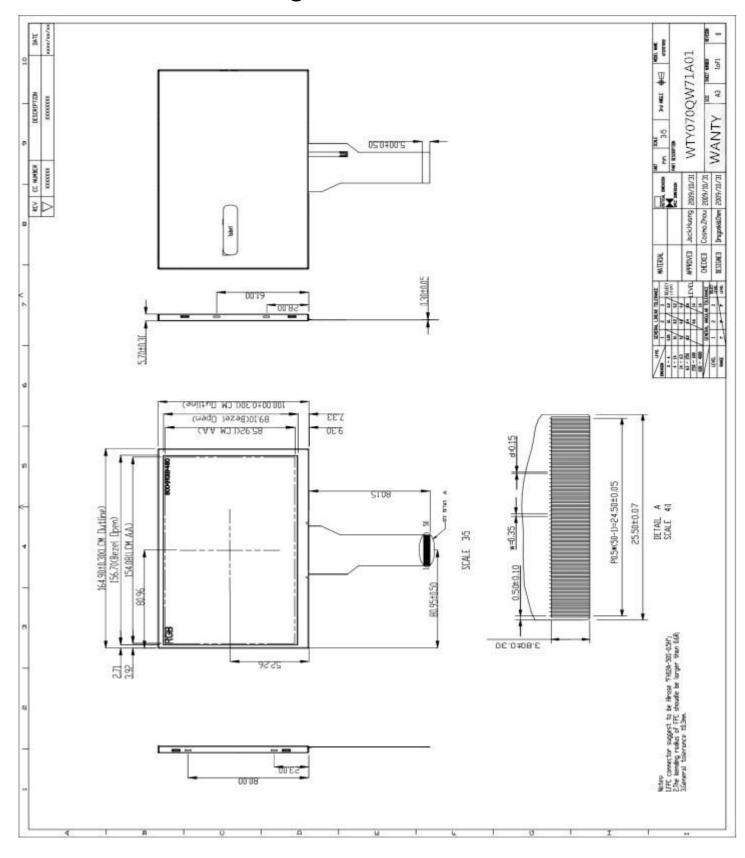
Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

6.2. Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3. Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.


6.4. Storage

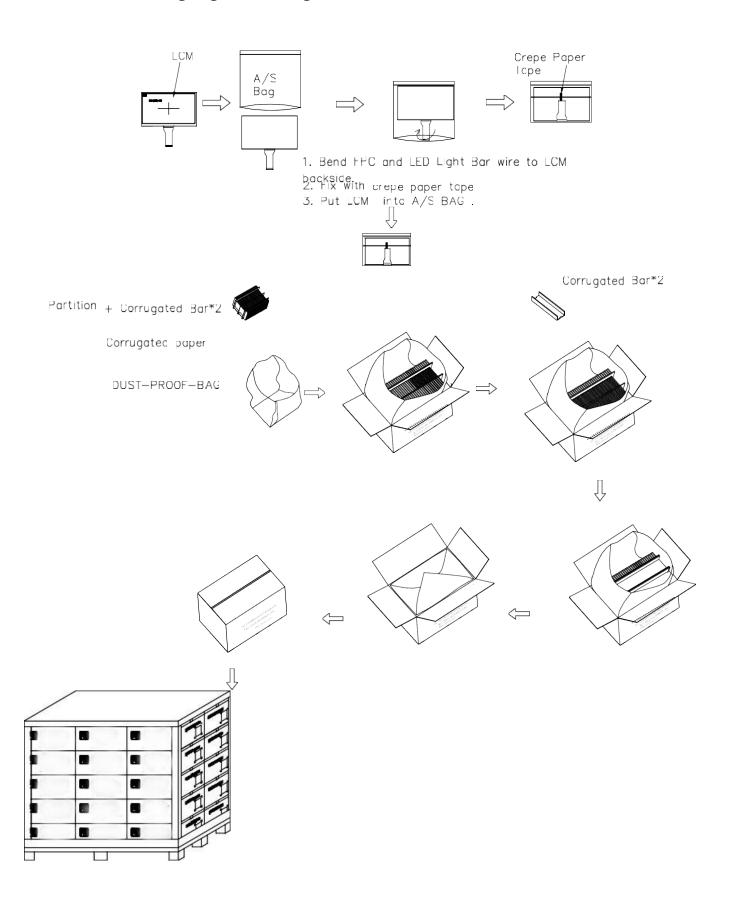
- 1. Store the module in a dark room where must keep at 25±10°C and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
 - 3. Store the module in an anti-electrostatic container or bag.

6.5. Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

7. Mechanical Drawing

8. Package Drawing


8.1. Packaging Material Table

No.	Item	Model (Material)	Dimensions(mm)	Unit Weight (kg)	Quantity	Remark
1	LCM Module	WTY070QW71 A01	164.9 × 100.0 × 5.7	0.150	50pcs	
2	Partition	BC Corrugated paper	512 × 349 × 226	1.466	1set	
3	Corrugated Paper	B Corrugated paper	510 × 350	0.071	4pcs	
4	Corrugated Bar	B Corrugated paper	512 × 11 × 3	0.046	4pcs	
5	Dust-Proof Bag	PE	700 × 530	0.048	1pcs	
6	A/S Bag	PE	180 × 133 × 0.2	0.002	50pcs	
7	Carton	Corrugated paper	530 × 355 × 255	1.100	1 pcs	
8	Total weight	10.682 kg ± 5%				

8.2. Packaging Quantity

Total LCM quantity in Carton: no. of Partition 2 Rows × quantity per Row 25 = 50

8.3. Packaging Drawing

